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ABSTRACT Large carnivores potentially change their behavior following physical capture, becoming less responsive to the attractants that

resulted in their capture, which can bias population estimates where the change in behavior is not appropriately modeled. We applied occupancy

models to efficiently estimate and compare detection probabilities of previously collared grizzly bears (Ursus arctos) with bears captured at DNA

hair-snag sites that were not previously collared. We found that previously captured bears had lower detection probabilities, although their

detection probabilities were still .0, implying that they were still visible to be sampled via the DNA hair-snag grid, which was able to detect

finer differences in capture probabilities of previously collared bears compared with Huggins closed-captures population models. To obtain

relatively unbiased population estimates for DNA surveys, heterogeneity caused by previous live capture should be accounted for in the

population estimator. ( JOURNAL OF WILDLIFE MANAGEMENT 72(3):589–595; 2008)
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Use of hair-snag DNA sampling to estimate grizzly bear
(Ursus arctos) populations has resulted in vastly improved
population estimates in Canada and the United States
(Woods et al. 1999, Poole et al. 2001, Boulanger et al.
2002). However, often live capture of carnivores has also
occurred in these areas using leg-snaring techniques that are
similar to hair-snag bait sites used to sample DNA. Physical
capture uses bait (rotten meat) that resembles the smell of
scent-lures used in DNA sites and both likely have human
odors. Therefore, physical trauma experienced during live
capture and human scent associated with each technique
might make bears less likely to enter DNA hair-snag sites.
Bears are not physically captured in DNA sites, and
therefore, we refer to probability of obtaining DNA from
a bear at a hair-snag site as a detection probability rather
than a capture probability. In theory, reduced detection
probabilities of previously live-captured bears will cause little
bias in mark–recapture results because estimation models
allow detection probability variation if appropriate estima-
tors robust to heterogeneity are used for analysis of the data
(Burnham and Overton 1979, Pledger 2000). However, if a
substantial segment of previously collared bears displays zero
detection probability, then these bears are effectively
invisible to DNA sampling and resulting estimates will be
biased.

A challenge in exploring the effect of past live capture on
current DNA detection probabilities is that often live-
capture events occurred years before the DNA project
began. Often, it is unknown whether bears that were live

captured are alive and still on the DNA-sampling grid. The
question becomes how to treat bears that were previously
live captured but not detected in DNA samples. One
potential method is to only include bears that are currently
radiocollared. For example, Boulanger et al. (2004a, b)
found that DNA detection probabilities of bears with active
collars during sampling were equal or slightly reduced
compared with other bears. However, sample sizes in these
studies were limited to bears with active collars resulting in
reduced sample sizes and lower test power. Alternatively,
open models can potentially be used to account for survival
or movement from grids for animals captured alive in
previous years. However, open models, such as the Cormack
Jolly Seber model, do not allow within-year estimation of
capture probabilities such as is done with closed-captures
population estimation models. Robust design models allow
estimation of within-year capture probabilities and survival
rates between yearly sessions. However, we only conducted
multiple within-year sessions for 1 year for each study area,
thereby minimizing advantages of survival estimation from
this method.

We present a method using occupancy models in Program
MARK to efficiently compare detection probabilities of
previously live-captured animals that may have died or
otherwise left the area with those detected only using DNA
mark–recapture or traditional mark–recapture methods
(White and Burnham 1999, MacKenzie et al. 2002). We
suggest that this approach is applicable to any species in
which multiple types of encounters are used to estimate
population parameters. We use data from 2 DNA mark–
recapture estimation projects conducted in the Foothills of1 E-mail boulange@ecological.bc.ca
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Alberta (Boulanger et al. 2005a, b). Our fundamental
question was whether these bears had reduced detection
probabilities or, in the extreme, were undetectable using
DNA hair snags at bait stations.

STUDY AREA

In spring of 2004, we sampled a DNA hair-snag grid of 180
7 3 7-km cells (8,820 km2) in Alberta Grizzly Bear
Management Area 3 between Hinton and Highway 11 in
western Alberta. In 2005, we sampled a DNA hair-snag grid
with 173 7 3 7-km cells (8,477 km2) in Alberta Grizzly Bear
Management Area 4 between Calgary and Highways 1 and
11 (Alberta Grizzly Bear Recovery Team 2005). These areas
were defined as genetically based subunits using Program
STRUCTURE by Proctor (2004), thereby maximizing
applicability of estimates to the overall population and
minimizing closure violation (Pritchard et al. 2000, Proctor
et al. 2002). In each year, we conducted sampling for 4
occasions with bait sites moved between occasions to ensure
adequate coverage of bear habitats within the study area. We
identified 44 bears in 2004 and the resulting population
estimate was 53 (SE ¼ 8.3, 95% CI ¼ 44–80) bears. We
identified 41 individual bears in 2005, and the resulting
population estimate was 47 (SE ¼ 3.99, 95% CI ¼ 44–60;
Boulanger et al. 2005a, b; Boulanger et al. 2006).

In both the 2004 and 2005 DNA mark–recapture projects
the actual number of bears with Global Positioning System
(GPS) collars during sampling was low (n¼ 8 and 9 for 2004
and 2005, respectively). However, 32 bears had been
historically collared in the study areas but were not carrying
working radiocollars during DNA sampling (Table 1; Fig. 1).

METHODS

We applied occupancy models to estimate probability of
detection for DNA and radiocollared bears (p) and
probability that radiocollared bears were present on the
sampling grid during DNA sampling (W). Occupancy
models estimate detection probability in an analogous
fashion to Huggins closed-captures population size-estima-
tion models except that occupancy of the sample unit (sites
in most scenarios, bears in our study) rather than population
size of sample units is estimated (Huggins 1989, 1991;
MacKenzie et al. 2002; MacKenzie et al. 2004). A key
distinction between occupancy and closed-captures popula-
tion-estimation models is that undetected sample units (i.e.,
0000 encounter histories) are included in the encounter
history for occupancy models, whereas closed-captures
models only use sample units that are detected at least once.

Our data set contained information about bears potentially
on the grid but not captured (the zero capture-frequency
group in Fig. 1) as well as information about occupancy and
detection probability of bears that were previously collared
(bears with .0 detection frequency that were previously
collared in Fig. 1). Conceptually, each bear that had been
collared in years previous to DNA sampling had a probability
of occupancy (W) on the sampling grid, and therefore,
encounter histories of bears not captured in DNA sampling

could be parameterized using occupancy models. For
example, if we did not detect a previously collared bear on
the sampling grid (i.e., a detection frequency of zero or a
0000 detection history) then it was either not present or was
present and not detected. In terms of occupancy model
parameters, probabilities of each event would be W(1� p1)(1
� p2)(1� p3)(1� p4), or W

Q4
j¼1ð1� pjÞ, if we did not detect

the bear, but it was present on the grid; or (1�W), if the bear
was not present on the grid, leading to an overall probability
of the 0000 encounter history of W

Q4
j¼1ð1� pjÞ þ ð1�WÞ;

where j corresponds to a sampling session (MacKenzie et al.
2004). Probability of an encounter history of a bear captured
in the first session only (i.e., 1000) would be Wp1

Q4
j¼2ð1�

pjÞ: We parameterized each encounter history for previously
collared bears in terms of occupancy models by using the
same approach as the 0000 or 1000 encounter histories. We
also incorporated bears that were monitored on the grid
during DNA sampling and bears captured using DNA
methods (including bears that were not previously collared)
into this analysis by fixing W at 1 (as described later) for this
group because occupancy was certain. The occupancy-model
analysis, therefore, used information from bears with
detection frequencies of 0–4 in Figure 1 as well as
information from bears that were not previously collared
but that we detected on the DNA grid to model influence of
covariates on detection probability and occupancy. Param-
eterization of the encounter history for closed models is
similar to occupancy models, except that W is not modeled,
and therefore, closed models do not include bears with a zero
detection frequency (Fig. 1), resulting in less power to
estimate differences in detection probabilities between
collared bears.

We conducted our analysis using the occupancy models
currently available in Program MARK. We used detection
histories from the 2004 and 2005 DNA surveys to model
detection and occupancy rates of bears. Bears that had been
previously monitored on the area but that we did not detect
in DNA projects received a 0000 detection history. We
divided bears into groups based on the year last monitored
(i.e., yr since bear was last known to be alive and on DNA
survey grids). Bears that were currently being monitored
(using radiotelemetry or GPS methods) or bears detected in
DNA hair snags were both assigned into the zero-years-
since-last-monitored group. We assigned previously live-
captured bears to a group according to the year they were
last monitored up to 5 years previous, which resulted in 6
unique groups in the Program MARK occupancy-model
analysis. We first constrained W to have no within-year
(occasion-based) variation, meaning that the bear popula-
tion was demographically and geographically closed during
the DNA survey. We then used the design matrix in
Program MARK and a log-link (eb) to model estimates of W
as an exponentially decreasing function for each group in the
analysis, which allowed us to estimate probability of
occupancy or presence of bears that we did not know
whether they still existed on the DNA survey grids (White
et al. 2002). We gave bears in the zero group a zero in the
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design matrix, which resulted in a b 3 0 term of zero and a

resulting estimate of W¼ 1 because e0¼ 1 because we were

certain of presence of these bears on the grid. We

successively constrained other groups with design matrix

values 1 to 5, which modeled an exponential decline in the

estimated W and, thus, probability of presence of bears with

unknown occupancy status. We also tested year-specific and

quadratic declines in W to test a full range of potential

declines in W.

We modeled detection probabilities (p) using a logit-link.

We entered as individual covariates sex of bear, year of

DNA study, years since last live capture, last live capture in

snare (binary), last live capture with helicopter darting

(binary), and total number of live captures. We were

particularly interested in the effect of snares on bear

detection probabilities given the similarity of this type of

capture to DNA hair-snag sampling. In particular, we

hypothesized that female bears that had been snared would

be least likely to be detected in hair snags given that females

are most difficult to physically recapture after previous

snaring. For this reason, we specified a priori models that

assumed snare-specific and sex-specific capture probabilities

of bears that were previously snared. It was likely that

undefined heterogeneity because of factors such as age were

present in the data set that could potentially bias occupancy

estimates (Mackenzie et al. 2002, Boulanger et al. 2004b).

We modeled heterogeneity that could not be explained by

identifiable factors (i.e., sex) using a mixture-model

approach (Pledger 2000). Mixture models use a mixture of

�2 detection probabilities to model heterogeneity of one

detection probability, which allows modeling of multipoint

distributions that may arise from heterogeneity of detection

probabilities (Pledger 2000). For example, overall detection

probability for an encounter history where a mixture of A

distributions is used is
PA

i¼1 pi hi
v ð1� hiÞt�v; where v

equals number of detections of the animal for t occasions, pi

Table 1. Collared grizzly bears possibly on the 2004 and 2005 DNA grids by year last monitored. Captured refers to capture in hair-snag traps employed
during DNA sampling. Data are from live-capture and DNA-capture projects in Alberta Grizzly Bear Management Areas 3 and 4, Alberta, Canada.

Yr last monitored

Collared-bear DNA detections

2004 DNA grid 2005 DNA grid

Total bears Detected Total bears Detected

M F M F M F M F

1999 1 1 0 0 0 0 0 0
2000 2 1 0 0 0 0 0 0
2001 2 3 1 1 0 0 0 0
2002 1 4 1 3 0 0 0 0
2003 7 7 4 3 0 0 0 0
2004 1 7 0 3 1 2 0 0
2005 0 9 0 7

Figure 1. Detection frequencies (no. of DNA sampling sessions in which a grizzly bear was detected) of DNA bears (bears that were not previously collared
that were detected in hair snags) and previously collared bears as categorized by years since last monitored on DNA grids and year of DNA survey for Alberta
Grizzly Bear Management Areas 3 and 4, Alberta, Canada, May–August 2004 and 2005. For example, the zero group corresponds to collared bears that were
monitored during DNA sampling; a one corresponds to collared bears that were last monitored 1 year previous to DNA sampling. Occupancy models use
information for all the bears, whereas closed models only include bears with detection frequencies that are .0.
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is probability the animal has detection probability hi, with
the sum of the pi ¼ 1. Thus, for A¼ 2, p2¼ 1 � p1. From
Carothers (1973), we estimated mean detection probability
(based on 2 mixture distributions) as h¼ p1 h1þ (1�p1) h2.
We estimated variance of h using the delta method (Seber
1982) as:

varðhÞ ¼ 2covðp; h1Þðh1 � h2Þ
þ 2covðp; h2Þð1� pÞðh1 � h2Þ
þ 2covðh1; h2Þpð1� pÞ þ varðpÞðh1 � h2Þ2

þ varðh1Þ p2 þ varðh2Þðp� 1Þ2

We then transformed variances to the logit scale to
estimate confidence intervals for h (White et al. 2002).

We also analyzed the data using Huggins (Huggins 1989,
1991) closed models in Program MARK to determine if the
same differences in capture probabilities detected by
occupancy models could also be detected using closed
models. We used the same covariates as the occupancy
analysis; however, we only included the radiocollared bears
that we detected in DNA sampling (bears with detection
frequency .0 in Fig. 1).

We performed model selection using the Akaike’s
Information Criterion corrected for small sample size
(AICc). The model with the lowest AICc value was the
most parsimonious model of the models evaluated to explain
the observed data (Burnham and Anderson 1998). We used
change in AICc (DAICc) values to compute Akaike weights
(wi) to evaluate relative importance of each of the candidate
models (Burnham and Anderson 1998).

RESULTS

We detected 85 bears using DNA methods in the 2004 and
2005 studies. Of the 85 bears we detected, 23 were currently
or had been previously collared. We did not detect with DNA
sampling 26 bears that were currently or previously collared.
Mean age of collared bears at last capture was 9.06 (SD¼ 5.1,
n¼ 33) for females and 6.92 (SD¼ 5.1, n¼ 14) for males.

Occupancy model-selection results suggested that detec-
tion probability was influenced by sample occasion (1–4),
year (2004 or 2005) of DNA survey, previous capture type
(helidart or snare), and an interaction between sex of bear
and whether a bear was previously snared (Table 2, model
1). In addition, support of mixture heterogeneity models
suggested that undefined heterogeneity was present in the
data set. Models that included years since last live capture
(yrscap) or total captures were less supported (Table 2, model
7). Of the most interest was detection probability variation
induced by previous capture method. The minimum AICc

model that included snare, dart, and sex 3 snare variables
was 10.9 units better than the equivalent mixture model
lacking those covariates, demonstrating the importance of
those variables in modeling detection probabilities.

On average, detection probabilities were 1.6 times higher
in 2005 than 2004. We were most interested in the lower
values in detection probabilities, so we focused our
interpretation on 2004. We found detection probabilities
decreased as a function of previous live capture, especially for

females that had been snared; however, confidence intervals
were above zero (Fig. 2). Bears that had been previously
helidarted had detection probabilities between DNA bears
and snared bears (Fig. 2).

A model with an exponential decline in occupancy (Table
2, model 12) was most supported by the data compared with
more complex models (Table 2, models 15–16). Probability
of presence (occupancy) decreased as a function of years
since the bear was last monitored (Fig. 3). Probability of
presence was ,0.5 for bears last monitored �3 years before
DNA sampling.

Results from the Huggins model closed-captures analysis
suggested that it was possible to detect effect of snaring on
detection probabilities as shown by support for a model with
year-specific, occasion-specific, and snare-specific detection
probabilities (Table 3, model 1). However, models with
lowered detection probabilities of bears that were helidarted
or lower detection probabilities of females that had been
snared were not as supported. For example, an equivalent
form of the most supported occupancy model (Table 2,
model 1) was less supported with the closed-model analysis
(Table 3, model 5) by 3.06 AICc units. As with the
occupancy model data set, mixture models with undefined
heterogeneity were most supported.

DISCUSSION

Our fundamental objective was to determine whether
previously captured bears displayed low or zero detection
probabilities such that they would appear invisible to DNA
sampling and, therefore, cause bias in population estimates.
Results from both analyses suggest collared bears were
visible for the Alberta projects we analyzed. However,
collared bears displayed lower detection probabilities,
although point estimates and confidence intervals of
detection probabilities were .0, which suggests that the
number of collared bears not detected in the DNA surveys
could be explained by sampling variation as opposed to there
being a segment of impossible-to-detect bears. The
similarities between physical capture sites and DNA
sampling sites (smell of capture bait and DNA scent lures
and the likely presence of human odors at each) are likely
responsible for the reduced DNA-detection probability of
previously physically captured bears.

The main advantage of occupancy models for exploration
of bear detection probabilities is that occupancy models use
the full amount of information available from multiple data
sources. That is, in occupancy models, probability that a
previously captured bear is present on the DNA grid is
modeled, which is not possible with the Huggins closed-
captures model. The DNA data set allows precise estimation
of detection and occupancy probabilities for the segment of
bears that were detected in DNA sampling. Unlike closed
models, occupancy models include information on the
segment of bears that were potentially on the grid during
sampling but not detected (through entering bears with
detection frequencies of zero in Fig. 1 in the encounter
history). As shown in the comparison of occupancy and
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closed models, this additional information allowed occu-
pancy models to detect finer-scale variation in detection
probabilities, such as the effect of helidarting on detection
probabilities and reduced detection probabilities for females
that have been snared. Conveniently, occurrence of bears
known to be previously on the sampling grid can be modeled
using the W parameter even though DNA sampling did not
occur in years before the project. The occupancy model in
this context is similar to an open model in that it is not
assuming that all bears that were previously on the grid are
present. However, unlike open models, occupancy of
previously collared bears is estimated with a minimal

number of parameters, thereby, increasing the power of
the analysis to detect differences in detection probabilities.
Occupancy or presence in this context is analogous to
apparent survival or the product of true survival rate and
emigration rate of bears from the grid.

Lower detection probabilities of collared bears constitute
heterogeneity variation, which is common in bear DNA
mark–recapture data sets. Multiple empirical and simulation
studies have shown that bias in estimates is minimal in the
presence of heterogeneity variation if appropriate methods
are used to analyze the data (Otis et al. 1978, Pledger 2000,
Boulanger et al. 2002, Boulanger et al. 2004a). However,

Table 2. Akaike’s Information Criterion corrected for small sample size (AICc) model-selection results for occupancy-estimation models applied to grizzly
bear live-capture and DNA hair-snag data from projects in Alberta, Canada, May–August 2004 and 2005. Time-specific models are models that allowed
detection probability to vary for each sample session. Covariates included dnayr (yr sampling conducted), dart (previous darting for live capture), snare
(previous snaring for live capture), sex, yrscap (yr since last live-capture event), total captures (total no. of previous live captures), and LM (yr since last
monitored on the sampling grid). The AICc, difference in AICc values between the ith model and the model with the lowest AICc value (DAICc), Akaike
weights (wi), number of parameters (K ), and model deviance are presented.

No. Detection probability Occupancy AICc DAICc wi K Deviance

1 p(.)a h1&2(time-specific þ dnayr þ dart þ snare þ sex 3 snare) LM 530.9 0.00 0.281 11 506.2
2 p(.) h1&2(time-specific þ dnayr þ snare) LM 532.7 1.75 0.117 9 512.9
3 p(.) h1&2(time-specific þ dnayr þ dart þ snare) LM 532.7 1.76 0.117 10 510.5
4 p(.) h1&2(time-specific þ dnayr þ dart þ snare þ sex 3 snare þ sex 3 dart) LM 532.8 1.88 0.110 12 505.6
5 p(.) h1&2(time-specific þ dnayr þ dart þ snare þ sex 3 snare þ total captures) LM 532.9 2.03 0.102 12 505.8
6 p(.) h1&2(time-specific þ dnayr þ snare þ sex 3 snare) LM 533.3 2.43 0.083 10 511.1
7 p(.) h1&2(time-specific þ dnayr þ snare þ yrscap) LM 533.8 2.85 0.068 10 511.6
8 p(.) h1&2(dnayr þ dart þ snare) LM 534.5 3.60 0.046 7 519.4
9 p(time-specific þ dnayr þ dart þ snare þ sex 3 snare) LM 535.3 4.40 0.031 9 515.5

10 p(time-specific þ dnayr þ dart þ snare) LM 535.4 4.49 0.030 8 518.0
11 p(time-specific þ dnayr þ dart þ snare þ sex) LM 537.5 6.63 0.010 9 517.8
12 p(dnayr þ dart þ snare þ sex) LM 540.8 9.88 0.002 6 528.0
13 p(.) h1&2(time-specific þ dnayr) LM 541.8 10.90 0.001 8 524.4
14 p(.) h1&2(time-specific þ dnayr þ dart) LM 542.3 11.40 0.001 9 522.5
15 p(dnayr þ dart þ snare þ sex) LM 3 sex 543.0 12.13 0.001 7 528.0
16 p(dnayr þ dart þsnare þ sex) LM þ LM 2 543.1 12.14 0.001 7 528.0
17 p(.) LM 555.4 24.50 0.000 2 551.3
18 p(.) LM þ dnayr 557.4 26.53 0.000 3 551.2
19 p(.) year-specific 558.3 27.41 0.000 7 543.2

a (.) indicates the parameter was constant.

Figure 2. Estimated grizzly bear detection probabilities by previous capture method for DNA efforts in 2004, Alberta Grizzly Bear Management Areas 3 and
4, Alberta, Canada, May–August 2004 and 2005. Estimates are for A) females and B) males across sampling occasions. Estimates are shown from the
minimum Akaike’s Information Criterion corrected for small sample size (AICc) occupancy model (Table 2). Error bars are 95% confidence intervals on
predictions.
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sampling should be intensive enough so that bears have
multiple chances to be detected during sampling to ensure
adequate performance of heterogeneity estimators (Bou-
langer et al. 2006). Detection probabilities in the Alberta
projects we used were relatively high (i.e., P¼ 0.33 and 0.52
for 2004 and 2005 grids, respectively; Boulanger et al.
2005a, b; Boulanger et al. 2006). If detection probabilities
were lower, it would become more probable that bears with
relatively low detection probabilities (i.e., F that had been
previously snared) would become less visible to hair-snag
sites leading to potential bias.

Our approach using occupancy models shares the same set
of assumptions as the Huggins closed-population estimators.
Namely, it assumes that the sampling grid is closed to
movement during sampling. Given the similarity of occu-
pancy and closed-captures models, MacKenzie et al. (2006)

suggest that violation of closure does not bias estimates of
occupancy if movement is random across grid boundaries
(Kendall 1999). Heterogeneity of occupancy probabilities
will not bias occupancy estimates but may cause variance of
occupancy probability to be inflated. Heterogeneity in
detection probability will negatively bias occupancy proba-
bilities (MacKenzie et al. 2006). We used mixture models
and covariates to effectively model heterogeneity variation,
thereby, minimizing this source of bias. Another assumption
of occupancy estimators is independence between detections
of sample units. In our case the assumption is translated to
independence between detected bears. This assumption is
probably met for most of the population given that the
degree in which bears associate is minimal (Stenhouse et al.
2005). One exception would be family groups that are more
likely to be detected together (Boulanger et al. 2004a).
Violation of the assumption of independence between
detected bears would result in overdispersion of multinomial
variances and underestimates of occupancy variance in an
analogous manner to underestimation of variance of
population size in closed models. Currently, there is no
method demonstrated to estimate overdispersion reliably for
closed-population models or occupancy-estimation models
that include individual covariates.

Our approach is potentially useful for species other than
grizzly bears and for detection methods other than DNA
sampling. For example, methods have been proposed that
use both live-capture and mark–recapture methods or use
mark–recapture methods to analyze live-capture data
(Powell et al. 2000, Amstrup et al. 2001, Brongo et al.
2005). In some cases, these methods assume that previous
live capture does not affect subsequent detection rates.
Occupancy models provide an efficient and powerful
method to test this assumption using data from currently
and previously marked animals.

MANAGEMENT IMPLICATIONS

We found that previous physical capture of individual grizzly
bears reduces their detection probability with subsequent
DNA hair-snagging surveys. Consequently, studies relying
on physical capture for radiocollaring may be biasing

Figure 3. Probability of grizzly bear occupancy as a function of years since
last monitored (and known to be alive) from occupancy-model analysis,
Management Areas 3 and 4, Alberta, Canada, May–August 2004 and 2005.
Estimates are from the minimum from the minimum Akaike’s Information
Criterion corrected for small sample size model. Error bars are 95%
confidence intervals on predictions.

Table 3. Akaike’s Information Criterion corrected for small sample size (AICc) model selection results for Huggins closed-captures population models
applied to grizzly bear DNA hair-snag data from projects in Alberta Grizzly Bear Management Areas 3 and 4, Alberta, Canada, May–August 2004 and 2005.
Time-specific models are models that allowed detection probability to vary for each sample session. Covariates included dnayr (yr sampling conducted), dart
(previous darting for live capture), snare (previous snaring for live capture), yrscap (yr since last live-capture event), and sex of bear. The AICc, difference in
AICc values between the ith model and the model with the lowest AICc value (DAICc), Akaike weights (wi), number of parameters (K), and model deviance
are presented.

No. Model AICc DAICc wi K Deviance

1 p(.) h1&2(time-specific þ dnayr þ snare) 446.7 0.00 0.329 8 430.2
2 p(.) h1&2(time-specific þ dnayr þ snare þ sex 3 snare) 447.8 1.12 0.187 9 429.2
3 p(.) h1&2(time-specific þ dnayr) 448.4 1.72 0.139 7 434.0
4 p(.) h1&2(time-specific þ dnayr þ dart þ snare) 448.4 1.78 0.135 9 429.9
5 p(.) h1&2(time-specific þ dnayr þ snare þ dart þ sex 3 snare) 449.7 3.06 0.071 10 429.1
6 p(.) h1&2(time-specific þ dnayr þdart) 450.4 3.70 0.052 8 433.9
7 p(.) h1&2(time-specific þ dnayr þsnareþ dart þ sex 3 snare þ sex 3 dart) 450.4 3.73 0.051 11 427.6
8 p(.) h1&2 time-specific þ dnayr þ snare þ dart þ sex 3 snare þ yrscap) 451.8 5.14 0.025 11 429.0
9 p(.) h1&2(dnayr þ dart þ snare) 453.8 7.15 0.009 6 441.6

10 p(time-specific þ dnayr þ snare þ dart þ sex 3 snare ) 456.3 9.67 0.003 8 439.9
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subsequent population estimates obtained with DNA hair
snagging unless the additional individual heterogeneity from
previous capture is included in the population-estimation
analysis. It is also essential that studies are designed to ensure
multiple encounters of bears with DNA sites to, therefore,
maximize detection probabilities. In addition, researchers
should attempt to minimize similarities between live capture
and DNA hair snags by using different baits and minimizing
human scent when setting up DNA hair-snag stations.
Finally, the supplementation of genotypes obtained from hair
snags with genotypes obtained from other sampling methods
(such as rub trees) can potentially reduce biases caused by
hair-snag sampling alone (Boulanger et al. 2008).
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