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Robustness of capture-recapture estimators to sample
biases in a cyclic snowshoe hare population
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Summary

1. A Monte Carlo simulation model was used to determine estimator robustness to
trap saturation and other sample biases typical of a cyclic snowshoe hare population.
2. Field studies showed that hare capture probability varied directly with the amount
of nightly movement made by an individual. This relationship was simulated by using
an individual-based model of individual hare movement and the trapping process.

3. All estimation models in program CAPTURE except the jackknife heterogeneity
(M,) estimator showed increasing negative bias with increasing hare abundance in
computer simulations. The jackknife estimator was robust to biases caused by trap
saturation, and showed an acceptable coefficient of variation.

4. The program capTURE model selection routine performed poorly by selecting esti-
mation models of different bias for each simulated hare abundance.

5. We conclude that for closed populations the jackknife estimator (M) is the most
robust to sampling variation in a cyclic snowshoe hare population. These results
suggest that it is optimal to use one model rather than change models for populations
which exhibit large changes in abundance.

Key-words: capture-recapture, Monte Carlo simulation, program CApTURE, snowshoe
hare, trap saturation bias.
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Introduction

One of the most common techniques in the study
of small mammal populations is the estimation of
abundance using capture-recapture methods. During
the past 20 years a variety of estimation models have
become available to biologists through micro-
computer software packages such as program cap-
TURE (Otis et al. 1978). The reason for continued
theoretical attention to this subject is that most simple
ratio population estimators, such as the Jolly-Seber
estimator, display an unkmown bias when unequal
probabilities of capture exist within the population
being trapped (Gilbert 1973).

There are many estimation models available and it
is difficult for the field biologist to know which of
the newer techniques is optimal for wild populations
(Hallet et al. 1991; Carothers 1973). There are three
main problems with current estimation ‘methods.
First, most theoretical simulation tests of capture—
recaptuze experiments are difficult to apply to field
experiments because capture probability distributions
of wild ‘animals. are uvsually unknown - {Carothers
1973). Secondly, data-based model seléction routines
lack power to pick unbiased models unless the popu-

lation being trapped is large (Menkins & Anderson
1988; Hallet et al. 1991; Otis &t al. 1978). Thirdly, few
field data sets exist in which true population values
are known that would allow empirical determination
of estimator bias (Carothers 1973; Boulanger & Krebs
1994, Hallet er al. 1991).

The objective of this study was to determine optimal
estimation models for capture-recapture data from
populations that exhibit large changes in abundance.
In our study of snowshoe hare Lepus americanus (Erx-
leben) populations, capture—recapture abundance
estimates are used to calculate rates of increase of
hares on trapping grids, and to compare and evaluate
experimental treatments {Krebs ef al. 1992). The cye-

lic nature of snowshoe hare populations creates many

potential sample biases and provides an ideal test
of estimator robustness to.the variations present in
many wild populations. Smowshoe. hares exhibit
unequal probabilities of .capture (Krebs et al. 1986).
This population also shows widespreadl changes in
abundance from about 1 to 400 hares on a 60ha
trapping grid during a 10-year population cycle. Given
that there are a fixed number of traps avdilable’toithe
population, ‘the ‘capture ‘probability 6f an ‘individuzl
changes at higher hare aburidance, becomirig incréas-
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ingly related to its home range position relative to trap
sites and individual movement patterns. Conse-
quently, both the capture probability and subsequent
capture frequencies of individual hares in the trapping
data can be substantially affected by changes in popu-
lation abundance on the trapping grid. We define this
type of sample bias trap saturation bigs.

We evaluated capture—recapture estimators per-
formance using an individual-based Mente Carlo
simulation model to generate trapping data to test the
robustness. of estimation medels found in program
CAPTURE (Otis et al. 1978). Our model simulated hare
movermnents, hare capture probability differences, and
the trapping processes. By simulating hares at differ-
ent abundances, we could determine which estimators
showed the most consistent bias at all abundances and
were therefore most robust to trap saturation bias.

No previous Monte Carlo simulation evaluations
of CAPTURE estimators have simulated capture prob-
ability variation caused by the trapping procedure.
Omne reason for this is that there has been little field
research into the natural causes of capture probability
variation (White ef al. 1982; Carothers 1973). To aid
in developing a realistic simulation model we first
conducted a field study into sources of capture prob-
ability variation in a natural population of hares living
on an island.

We also used trapping data from the Kiuane project
and other field observations of hares to define other
parameters for the model. While the model was
designed for snowshoe hares, we feel our results are
applicable to any population which exhibits wide-
spread changes in abundance.

EMPIRICAL STUDIES OF HARE MOVEMENT
PATTERNS AND CAPTURE PROBABILITY
VARIATION

We designed a study to determine the degree of vari-
ation in movement patterns between hares and resolve
whether this affects capture probabilities. Trap satu-
ration bias is related to hare movement patterns, trap
encounter rate, and the abundance of hares on a trap-
ping grid. Little empirical work has been conducted
on the role of movement patterns and trap encounter
rates in determining capture probability variation.
Most simulation studies have assumed that animals
exhibit similar movements and random trap encoun-
ter (Skalski & Robson 1992; Wilson 1983; Zarnoch
1969). However, it is more likely hares exhibit differ-
ences in movement patterns, and non-random trap
enicountér which may be an important cause of cap-
turé probability variation. The method in which hare
movement and trap ‘encouriter is simulated should
hawe significant effects on the capture frequencies gen-
erated by ‘the simulation model and bias charac-
feristics of estimatorstested.

. ~For this study. we used the southern peninsula of
Jucquotdsland; located in-Kiuane Lake, 6 km:north- -

east of Destruction Bay in the Yukon Territory-of
Canada. The closest point of land is the Falbot Arm,
& 4 km to-the east. .

We fenced off the southern peninsula from: the.rest
of the island to assure complete closure within the
study area.

The vegetation in this area is a mosaic -of white
spruce Picea glawca (Moench (Voss)), willow (Salix
spp.), and birch Berula glandulosa (Michx) groves. The
study was conducted from March to May 1992, prior
to the emergence of summer vegetation, and prior to
the first litter of female hares (Boulanger & Krebs
1994; Boulanger 1993).

The first objective of the field study was to compare
movement patterns of hares. Adult radic-collared
hares (n = 15) were tracked from 21.00 to 02.00 hours
for 20 nights. We used a three tower null-peak tri-
angulation system to allow evaluation of error associ-
ated with animal locations (Fig. 1). During a session,
locations were taken on hares every 45 min. Only ani-
mals whose locations had a confidence limit of less
that 0-1ha (Lenth maximum likelihood estimator)
were tracked (White & Garrot 1989). Movement dis-
tance indices were calculated by dividing the cumu-
lative distance between successive radio-locations by
the elapsed time of radio observations. This provides
an index of amimal movement distances scaled for
the duratiom of time between fixes, and thus allows
comparison between animals (Siniff & Jessen 1969).
The limited scale of resolution with telemetry sam-
pling prevented us from detecting small-scale move-~
ment patterns. For this reason the movement distance
is best considered an index, rather than an absolute
measure of the distance an animal covers in one trap
night.

Our second objective was to measure the differences
in capture probability between individual hares. We
obtained an index of individual hare capture prob-
ability by intensively trapping the population of snow-
shoe hares on Jacquot Island. The capture probability
of an individual was estimated by the number of times
trapped divided by the number of trap nights (11). We
used a grid of 120 traps spaced 35 m apart trapped
for 11 nights. These traps were spaced uniformly
across the entire 40-ha surface of the island. With this
design the number -of traps outnumbered- hares by 4
to 1, and each hare had at least 6 traps-in its home
range {Boulanger 1993) (Fig.1). We could therefore
assume that sample bias'was minimal:aliowing a valid
index of probability of capture to be calculated.

‘Movement distances -and capture probabilities of
individual hares were positively -correlated (r = 0-6,
P =10016,n = 15) (Fig.2): From these results it can
be inferred that hares do.not -exhibit similar move-
ments .and .random trap -emcounter as has been
assumed in -previons.simulation studies {Skalski &
Robson - 1992; ‘Wilson, 1983;- Zarnoch 1976). This
relationship suggests a possible mechanistic relation-
ship betweenindividual biological differences between
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Fig. 1. A map of the Jacquot Island study site showing telemetry stations and live traps.
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Fig. 2. Movement distance index of hares as a function
empirical capture probabilities cn Facquet Island. Movement
distance index is expressed as metres moved per minute

{n = L5).
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hares {movement distance), the sampling process (trap
encounter), and subseguent.capture probability vari-
ation reflected in the data. Consequently, we
developed an individual-based movement-trap en-
counter model to simulate this relationship.

SIMULATIONMETHODS

General description of simudlation model

- The-objective -of our model was to ‘create a realistic

simulation of our trapping procedure:in the field. On
the Kluane grids-a population is sarupled for a series

-of five 'successive trap nights 1o obtain data for esti-

mation ‘of ‘abundance with program ‘CAPTURE. Each

~night-a grid -of ‘traps: is sét, and then-checked in the

morning. The ‘similation ‘model used ‘to mimic this
processis a modified version of a program produced

by ‘Zarnoch (1976) and later modified by “Wilson

(1983). The three basic submodels of the simulation
model are: (i) random walk movement model; (ii} cap-
ture probability model; and (iii) trapping process
model. The trapping process simulation model inte-
grates the random walk movement model and the
capture probability simulation model to produce
simulated data. For this reason we will explain it first.

Trapping process model

A set pattern of traps mimicking a uniform 8§ x 10
grid with 71 m trap spacing was employed for each
simulation. At the beginning of a simulation animals
are placed on the grid in a random spatial distribution.
Individual hares are assigned capture probabilities
dependent on the underlying capture probability
model. Each hare is then moved by the given random
walk model for a time step i. At each time step the
distance of each hare from each trap on the grid is
evaluated. If a hare’s location is within the capture
radius of a trap it may be trapped depending on its
probability of capture. If the hares probability of cap-
ture is greater than a randomly generated uniform
probability, then it is captured. The trap, as well as
the hare, is no longer considered in the trapping pro-
cess for the rest of the given trap night. If the hare is

_mot within a capture radius of a trap, or its probability

of capture is less than the random uniform prob-
ability, it contimues on its paih. At the end of the
trap night captured hares’ numbers are recorded and
stored, This process is repeated for .each of the five
trap nights.

Randmh‘wdlk hare movement model

- Thé tain ohjective -of the random walk model-was
.- mot tossimulate exact movernent pattérns:of hares:buit
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to-simulate differences in movement:patterns between - -

animals that could affect trap encounter rates and
subsequent capture probabilities. A ‘correlated ran-
dom walk model -developed by Bovet & Benhamou

-(1988) and further refined by Benhamou (1989) was

used to-accomplish this objective. The random walk
model was modified so that a hare’s movements were
contralled by a-single parameter: sinuosity (S,). Sinu-
osity (S,) is the tendency of the animal to turn while
travelling across a landscape. An animal with a low
sinuosity has a-tendency to move forward and traverse
large areas, whereas an animal with a high sinuosity
has:a tendency to turn frequently and traverse smaller
areas. By simulating a distribution of hare sinuos-
ities,we_could simulate differences in hare movement
patterns. The details of the random walk model and
the means by which we simplified it are given in
Appendix 1.

Sinuosity (S,) was set proportional to the observed
home range size. The home range sizes for the hares
were generated for each five trap night simulation as
a normally distributed random variable (% = 70 +
3-5 (SD) ha). No home ranges were smaller than 1 ha
because this small size is rarely observed in the field.
These parameter values are the mean and standard
deviation of home range sizes of hares found in the
Kluane area (Boutin 1984; Boulanger & Krebs 1994;
Hik 1994). We assumed hares had a circular home
range-and that its tendency to turn or wander from its
home range centre is proportional to its home range
size. Clearly this is a simplification but it is adequate
to describe an animal’s basic central tendency and the
area traversed within one trap night.

During each simulated trap night animals were
moved 1000 m in 100 10-m time-steps. This is the
mean movement distance of a snowshoe hare on the
Kluane grids (Hik 1994). We assumed that what deter-
mines the area an animal traverses is not actual dis-
tance moved, but the straightness of the individual
hare’s path. This assumption is biologically reason-
able. 1t has been documented that more sedentary
hares seem to travel in tight ‘loops’ in small areas,
whereas less sedentary individuals tend to have longer
‘loops” (Hik 1994). Therefore, an adequate simulation
of areas covered in one trap night can be ebtained by
varying sinuosity alone and keeping the step length
constant.

During the simulation hares are allowed to wander
out of the grid area. It is important to note that their
initial positions are .om,-er within 25 m of the grid
area, This initial condition simulates hetérogeneity
«caused by animals living on the edge-of the grid. How-
ever, ‘because the smallest animal home range size
allowed was 1 ha, even animals that had:home ranges

on the edge of the grid would traverse the grid area .-

and encountertrapsand could therefore be considered

- partofthe trappable:population. In reality, hares with
- Home'ranges farther than 25 m of the'edge ofthe grid
are-only -occasionally caught-on the grid: Using this

F=

conservative distance minimizes variations cansed:by
the-particular-distributions -of hare home ‘ranges-in
any particular simulation.

Capiure probability variation model

The capture probability variation model assigned cap-
ture probabilities to individual hares in each simu-
lation. The experiments on Jacquot Island suggested
that differential movement patterns were a principle
mechanism for variation in hare capture probabilities.
In addition to this type of variation, it was also poss-
ible that individual hare capture probabilities changed
as a function of prior trapping experience (behaviour)
Also, some individuals had innate tendencies to be
trapped independent of past experience and move-
ment pattern {(heterogeneity). Presence of predators,
weather and seasonal vegetation changes could also
cause time variation in -capture probabilities. It is
difficult to determine how much tirne, behaviour, and
heterogeneity variation contribute to overall capture
probability variation. For this reason we used two
capture probability simulation models, one in which
all hares had equal probability of capture (abbreviated
M) and one in which capture probability was infin-
enced by time, behaviour and heterogeneity (abbrevi-
ated M) In reality, the true underlying model is
probably somewbere in the range between these two
models.

No stmulation program is needed to simulate cap-
ture probabilities when ali capture probabilities are
equal. To simulate variation of captire probabilities
with time, bebaviour and heterogeneity we used a
version of K. Burnham’s simulation model {Otis et al.
1978; Wilson 983) which will be abbreviated as
model M, The details of this model are given in
Appendix 2.

CHOICE OF SIMULATION PARAMETERS
Abundances of hares

The main objective of this model was to simulate
possible sampling biases at different hare abundances
and capture probability levels. We found the abun-
dances ranged from 1 to 2 to 400 hares on a 39-06 ha
trapping grid for Kluane data from November 1985
te October 1992, We therefore chose to simulate hare
abundances of 20, 50, 100, 200 and 400 on the trapping
grids.

Trapping data from the Kluane projects was also
analysed to ‘determine the range of capture prob-
abilities usually observed. We used data from trapping
periods’ that occurred in the spring or late autumn,

- and’had atieast five successive trap nights. The prob-

abilities were calculated using the formula:

L

-equA

2
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In-this-formmla, on is'the total captured in.a frapping -

period, ¥ is'the number of trapping periods, and Nis
the estimated population:size. We used:the M, (jack-

knife) estimate for population size found.in program -

CAPTURE (Otis et al. 1978) because previous empirical

studies-have shown it to be approximately unbiased

with snowshoe hare populations (Boulanger & Krebs
1994). From these data we.chose to simulate the mean
captare probabilities of 0-23 and 0-35 found -on most
Kluane grids. We also simulated mean capture prob-
ability of 0-1 to determine estimator performance.at
the lowest observed mean capture probability level.

Captire radius, hare abundance and mean capture prob-
abilifies

In each simulation, a mean capture probability for the
population is an input parameter. Capture prob-
abilities are then assigned to individual hares based
on which capture probability model is being used.
However, both the population abundance and capture
radius parameters effect the opportunity -of .a hare
to be caught and subsequent capture probability. To
adjust for this problem we used iteration in which
capture radius was varied until mean capture prob-
ability input would approximately equal capture
probability ocutput as calculated in the formula
described previously. We found the optimal capture
radius for the model was 7m for the 0-23 and 0-35,
and Sm for the 0-1 capture probability simulations.

Number of simulations run

In this study there were 45 different combinations of
parameters simulated. More specifically, there were
five hare abundances (20, 50, 100, 200, 400), three
different mean capture probabilities (0-1,0-23, 0-35)
and two underlying capture probability models (M,
and M,,). For each combination of parameters 1000
simulations were run. This was a sufficient number of
simulations to allow for comparable results between
treatments.

The model is written in FORTRAN. All programs
were run on-a SUN SPARC station. The FORTRAN
base code for program CAPTURE was modified so-that
it would produce abridged data files for later analysis.
A master.driver file was written in a UNIX shell script
to call programs, and keep track of simulations.

CAPTURE ESTIMATION MODELS EVALUATED

We used the data generated from: the simulation-model

to evaluate the estimatipn models in ;program CAP-

TURE (Otis et al. '1973)‘,‘ which is one :of themore
commonly used pepulation _ estimation :computer

packages. .CAPTURE jncurporétes eight:different esti- -

mation models each of which makes specificassump-

tions regarding the capture probability structure:ofthe:
population. These-modéls.assume population:closure .

(no-births, deaths, emigration and immigration during
sampling). The particular -assumptions are ‘broken
dowsrto-capture probability variation by null (0} (all
animals-exhibit equal probability of capture), time (¢)
(temporal change in-population capture probabilities
only), behaviour (5) {capture probability change only
after an animal is trapped the first time), and het-
erogeneity () (all animals have a constant, individual

capture probability). For each model there is at least

one statistical estimator of population size (except for
model A ,, which has no estimator). The CAPTURE
models (with estitnators in parenthesis) tested are; My
(Null), M,(Darroch), M,(Chao 1989), M,(Zippin),
M, (jackknife), M, (Chao 1991), M ,(Burnham), M,
(Chao & Lee 1991), M,, (Pollock), and M, (Pollock
& Otto 1983). The subscript denotes the type of
assurnptions made by each model. Detailed descrip-
tions for each estimator can be found in Otis er al.
(1978) with the exception of more recent estimators in
which a full reference is given in parentheses.

The premise for having eight different estimation
models is that for any given set of data one of the
models will most closely approximate the capture
probability variations in the trapped population, and
the estimator for this model will provide the least
biased estimate of population size. CAPTURE uses a
series of goodness-of-fit tests and a discriminant
analysis to determine which model is most appropriate
for a given set of data (Otis er.al. 1978). We also test
the model selection routine to see if it picks models of
constant bias at all hare abundances.

INTERPRETING ESTIMATOR BIAS AND
PRECISION

Biag

It is erroneous to assume that the results from any
particular simulation reflect the actual bias that may
be found in the field. Instead, these results should
be used to compare models, and to determine what
possible biases in estimates.could result from the sam-
pling biases simulated. Because the true population is
known in these simulations, bias is calculated as:

_BN)-N

PRE:- »x.100 eqn B

In this formula E(N)is the mean estimate of popu-
lation size from 1000 simulations and Nis the true

-.population value. Given-the ebjectives of this study

the criteria for appraisal of -bias is as follows. First,
an -adequate ‘model should -exhibit constant bias as
abundance increases which would infer that it is
robust-to-trap-saturation biases. Secondly, because

.+ edge -effects -were- minimal (ie. all hares had home

range-centres.on, -or:within .25 m of the edge of the
grid) axmodel should:net-exhibit an extreme negative

- bias. The similations with all hares having equal.cap-
-pureprobabilitiesof capture-represents a very-simple
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sampling situation which probably does not oceirin
the real-world. in this case the sources-of -bias are
only the differential movement patterns of hares and
a slight edge effect. If an estimator exhibits negative
bias with this simulation, it probably will exhibit an
even larger negative bias in the real world.

Precision

The precision of an estimator is the repeatability of
its estimates from similar data sets. Precision is in-
dexed by the coefficient of variation. The formula for
coefficient of variation is:

¥

» 100 eqnC

[/

T EM)
In this equation E(M)is the mean estimated popu-
lation number for the particular estimationmodel and
is the mean standard deviation of N. The degree of
precision needed in estimates relates to the objectives
of the particular study. In the case of most studies of
population dynamics, estimates are used mainly for
assessing general trends in populations. In this case,
an estimator of fairly high precision is desirable. Poi-
lock et al. (1990) suggest-that a coefficient of variation
of 20% or less is usually adequate for most capture—
recapture studies.

Results

Estimators showed widely varying bias and precision
characteristics as a function of abundance, capture
probability model and mean population capture prob-
ability. All estimation models showed decreased esti-
mates of population size when capture probabilities
varied with time, behaviour and heterogeneity (M,
model) as. compared to equal capture probabilities
(M, model). Mean capture probability had varying
effects on estimators. The results from the 0-1 capture
probability were erratic with all models (except models
M, (Pollock) and M, (jackknife)) showing unac-
ceptable coefficients of variation above 30%. The 0-1
capture probability level represents the extreme lower
end of capture probabilities for the Kluane study, and
as a result we will not focus discussion on these results.
The 023 and 0-35 simulations produced similar results
for all models at all abundance levels. Because the
probability of (23 represents the usual mean capture
probability found on Kluane grids-it will be discussed
in more detail.

The effect of abundance on bias of estimators was
model specific. Few models were robust to changes in
abundance and subsequent trap saturation bias. These
results will be discussed in a model-specific fashion.

Heterogeneity model estimators

The-heterogeneity estimators-of Bumbam.&:Overton
(1978} and:Chao1989)displayed the least overall bias

with ‘both underlying models of capture probability
(Figs 3a and 4a). They also showeda-generally accept-
able coefficient of variation with exception of the
N = 20 simulations (Figs 3b and 4b). .

The jackknife estimator (M) of Burnham & Qver:
ton {1978) showed a positive bias with the equal prob-
ability capture simulations (Fig.3a) and a slightly
negative bias (Fig.4a) with the more complex M,
simulations. Unlike'most estimators, it showed a slight
increasing positive trend in bias with increasing abun-
dance with the equal capture probability model. With
the M, model it showed virtually no change in bias
with abundance.

The heterogeneity estimator, M, of Chao (1989)
was similar to the jackknife estimator in terms of
general bias and precision. It did show sensitivity to
change in abundance, with an increasing negative bias
as abundance increased especially with the M, cap-
ture probability model (Fig. 4a). It also showed a high
coefficient of variation (35%) and population number
was small (¥ = 20) when the underlying capture prob-
ability model was M.y, (Fig.4b). With the 0-1 capture
probability simulations (equal capture probability
model} this estimator showed a decreasing positive
(+40% at n=50 to + 10% at n =400) bias. It
also showed a very large coefficient of variation
(greater than 27% for all hare abundances) with
this simulation.

Null, behaviowr, and model estimuators

The null (M, ) and behaviour (M) model estimators
performed similarly and will therefore be discussed
together. Both models displayed a significant overall
negative bias (-10 to—30%)and an increasing negative
bias as abundance increased (Figs3a and 4a)
However, both showed a low coefficient of variation
(Mg, 12%; M,, 15%) with both capture probability
models (Figs 3b and 4b).

The time model estimators — M, and M,(Chao
1989) — showed a substantial negative bias that
increased with abundance (Figs3a and 4a). Each
showed an acceptable coefficient of variation (Figs 3b
and 4b),

Behaviour/heterogeneity model estimators

The behaviour/heterogeneity model estimators of
Pollock (1974) (M) and Pollock & Otio (1983} (M,
(Polock)) showed similar performance charac-
teristics. The Pollock & Otto (1983) estimator showed
an overall positive bias with the equal capture prob-
ability simulations (Fig. 3a), and a negative bias with
the M, simulations (Fig: 4a). The Pollock (1974) esti-
mator showed anegative bias with both capture prob-
ability models. Both-estimators showed an increasing
negative bias as.abundance increased. '
The-Pollock estimator showed a large coefficient.of
variation (25%3)with both-capture-probability:models
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Fig. 3. The results from simulations in which ail animals had-equal probability of capture of 023 was simulated: (a) displays
bias and (b) displays precision as.reflected by coefficient of variation. Each line represents bias or CV of a specific estimation

mode] and estimator as detailed on the figure.

(Figs3b and 4b). The Pollock and -Otto -estimator
showed a slightly -better performance showing an

-acceptable coefficient of variation in all simulations.

Overall, both “estimators showed a mediocre per-
formance-despite their more.complex structure. The

- substantial :trend ~of .increasing negative: bias swith: =/
“increasing abundance is:most noteworthy. -

Timelbehaviour model estimators

The model A, estimator showed the most erratic per-
formance of any estimator as noted by the large
coefficient -of wariation (30%) in all_simulations
{Figs3b -and: 4b) It showed- a negative bias .that
“increased as-abundanceincreased (Figs 3a and 4a).
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G. White {personal-communication) commented Time[heterogeneity model estimators

Ecological Society; that -this- -estimator- exhibits poor ‘perfor_man.ce, ) -

Foirnal of Applied especially whendata:do net conform to the underlying The model .M, estimator: was designed by Chao &
Ecology.38,530-542  ~assumptions:of the My model. ; Lee (1991) for-data with dow capture probabilities. It
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showed a roughly unbiased performanoe'fdr'aata at’
low abundances (Figs3a and 4a). However, as abun--

dance increased it showed an increasing negative bias.
Also, at lower abundances it showed alarge coefficient
of variation (27%) (Figs3b and 4b). Overall, this
estimator showed a mediocre performance due to
increasing negative bias at higher abundances.

Program-CAPTURE model selection routine

The program CAPTURE model selection routine picked ‘

different estimation models as a function of hare abun-
dance simulated, and underlying capture probability
model. Because models M, and M, were chosen in
the majority of the simulations they are displayed in
Fig. 5.

In general, the model selection routine picked the
negatively biased model M, at lower abundances and
the less biased model M, at higher abundances. Esti-
mators for models Myand M, vary by { 20% in terms
of bias when confronted with identical data sets.

These results suggest that the program CAPTURE
model selection routine picks models of different bias
at different hare abundances.

Discussion

HETEROGENEITY ESTIMATORS

The jackknife (M,) estimator showed the most reliable
performance of all estimators tested. These results

Equal capture: probability model
Mean P=0.23
100
lgr--=mmmmmme Bl
. s TG G e
g
R
E
[
!
=
L "

Mean - P=0.23

Modei selected (%)
5. 3 =m §

8

Fig. 5. Performance of the program. CAPTURE model selec-
tion rogting with changing hare density. -Percentages.of fre-
quencies when model My and model M, were ée!ecﬁed are
displayed. In some cases, both modsls were Chosen by the

" model selection routiné for a-set of data ‘Henee, some of the

percentage frequencies. addup to- more than 100%.

-showed .zincreasinig ~negative

agree with Otis et al. (1978) who comment that ilie
jackknife is the mostrobust of estimators to-variation
in capture probabilities. They also note that.its per-
formance is best in experiments in ‘which many ani-
mals.are.caught a relatively large number of times’.
QOur resitlts agree with these observations as the
coefficient of variation of the jackknife estimator
decreased substantially as abundance increased. Chao
{1989) reported that the jackknife estimator shows a
substantial negative bias when capture probabilities

. are low. However, it was one of the best estimators

with the 0-1 capture probability simulations showing
an-even -(at all.abundances) 10% negative bias and
one of the lowest coefficients of variation (mean
= 15%) of any of the estimators. The characteristics
of even bias with variation in abundance, and an
approximately unbiased performance suggest this esti-
mator is best for the stated objectives, especially at
abundances greater than 20 hares.

The Chao (1989} M, estimator was less reliable than
the jackknife estimator, showing an increasing nega-
tive bias as abundance increased in all simulations.
This estimator was developed because the jackknife
heterogeneity estimator has been documented to
underestimate -population size when capture prob-
abilities are low. With the 0-1 capture probability
simulations (equal capture probability model) this
estimator showed a decreasing positive bias as well as
a very large coefficient of variation (greater than 27%
for all hare abundances) with this simulation. Chao
(1989) does report a large standard error with this
estimator which is attributed to low capture prob-
abilities in the data. However, our results suggest that
this estimator is not an improvement over the jack-
knife estimator.

Other estimators

Most of the CAPTURE estimators (M, M,, M) showed
increasing negative bias with increasing abundance.
The consistent negative bias of these models could
be -due to the presence of heterogeneity within the
population. Otis et al. (1978) comments that model
M, is the least robust of any of the CAPTURE esti-
mators, and will exhibit a substantial negative bias if

" capture probabilities vary.among.animals. In any case,
" ‘these estimators seemed to be the most negatively

biased-of all models-in program CAPTURE.

The time model estimator of Chao (198%9) was
designed for use with data that have lower capture
probabilities. Chao (1989) reports that the Darroch
M, estimator can show a significant negative bias with
lower capture probabilities, Our results suggest that
this model is an improvement from the traditional
estimator, but it is still is not robust to biases caused

- byincreasing:abundance.

~The:more . complex models (M, My, M,) sl
bias .and -higher
coefficients .of variations:than the ‘simpler:-older
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models: These results suggest that despite their com-"

plex structure, these ‘models offer little improvement
than older models with this type of simulated data.
Furthermore, the complex structure results in a loss
of estimate precision as reflected by -the higher
coefficient of variation of most estimators.

Program CAPTURE model selection routine

The model selection routine in CAPTURE showed high
sensitivity to the population size being simulated. The
actual shape of the curvesin Fig. 5 could represent the
extremes of model selection trends actually found in
the field. The trends reflected in Fig. 5 can be explained
in terms of power of the statistical tests. When all
capture probabilities are equal, the only source of
variation in capture probabilities would be due to
sampling biases. It would therefore take a large sample
size or population size for the model selection routine
not to choose the null model. With the simulation in
which M,;,is the underlying model a Jarger ‘effect size’
or variation in capture probabilities is present and
therefore the null model is rejected more often as
sample size increases. The lack of power of the pro-
gram CAPTURE model selection routine has been docu-
mented by Menkins & Anderson (1988) and Hallet er
al. (1991). In these studies lack of power was related
to mean capture probability of the population. No
prior studies have related lack of power to changing
abundance of animals in the population.

An optimal model(s) for estimation of abundance
is one that displays a constant bias throughout the
hare cycle. The model selection routine of CAPTURE
fails in terms of this criteria. Use of the routine could
cause errors in comparisons between grids at different
abundances, as well as calculation of population rates
of increase for it may pick models of different bias
dependent on abundance of the population. These
results suggest that it is a better strategy to use one
robust estimator such as the jackknife that displays a
consistent bias at different hare abundances than rely
on the program CAPTURE model selection routine.

‘Conclusion

Estimators showed markedly different performance
characteristics as a function of population abundance
and underlying capture probability models. From the
results-of ‘these simulations, the M, jackknife esti-
mator is-the most robust to variations caused by
differential movement patterns and incrpasing hare
abundance. The program -CAPTURE model selection
Toutine lacked the power to select an estimator or

“pstimators of consistent bias at different hare abun-
:. dances. :

‘Comiplex-theoretical estimation models are being

-.produced. on a yearly basis; but few studies attempt

totestthese estimatorsin-applied field situations. The

sopesults from:this study -suggest that these newer esti-

mators offer little improvement over older methods.
‘For example, estimators for- models M,,; M and-M,,
showed little .or no improvement over the older jack-
knife estimator with snowshoe hare populations. Fur-
thermore, the lack of resolution with most trapping
data limits the reliability in which model selection
routines can discern differences in capture probability
variation and pick appropriate models. For this
reason, the utility of having eight different models will
be minimal without further research in applicability of
individual models and development of more powerful
model selection routines.

Capture-recapture estimation models attempt to
integrate theoretical statistics with the actual biclogy
of animals. Asa result, the utility of these models can
be determined only by studies that actually incor-
porate the biology of the animals being studied. More
research is needed to determine whether the under-
lying assumptions made by the newer estimators apply
to wild populations. These studies must be specific to
the populations being studied and the sampling regime
being used. Simulation models such as the one used
in this study that link the actual biology of the animal
to the estimation process should be more available for
use with biclegists. In this way, the biclogist can gain
an approximation of the variance and bias associated
with the estimates for the population studied.
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Appendix 1

RANDOM WALK MODEL OF BENHAMOU (1989)
AND BOVET &« BENHAMOU {1988)

In the original model of Benhamou (1989) an animal’s
spatial behaviour was controlled by two parameters:
Sinuosity (S,), and central tendency (k). Sinuosity (Sy)
is the tendency of the animal to turn while travelling
across'a landscape. Tt rangésfrom 0 to 1. The central
tendency factor (k) determines how far an.animal will
on.average travel from its home range.centre and also

varies from 0 to 1.The basic sequence in which an__

animal-moves according te this model is determined
by the following equations (for more detail see
Benhamou 1989). The equation for these parameters
are:

1 h' = Sbﬁ

i D,
T = D’b(l +k—p‘-)
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Dy = {{Xioy — X H(Yip — ¥} eqn 3
aD, =D — D, eqnd
o = N(O, 6;) eqn S
6.y =0+ eqn &
Xip1 =X+ Pcosd,, eqn 7
Y1 = ¥+ Psind,,, eqn 8

The computational -sequence in which a hare is

- moved will now be.described . Numbers in parentheses

pertain. to -patticular equations being described. A
hare is.in its home range centre (X,, Yy) initially, It
moves:from-its centre on the-first time step (i= 1):in
a random angle for a step length P. 1ts path after the
initial random step.is determined by the parameters
6y, dD;, a;-and:u; oy isdetermined by the step length
(P).and the-hare’s sinuoesity:(S,) and is fixed for the

-similation (equ 1. 0, varigs with the dismﬁée: of. the
-+~ hare from its-homerange-centre. It:isdetermined by
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the central tendency (&), step length {(P);.and @D, (eqn

2). The parameter dDD, is-the change in the hares dis-
tance. from:its home range centre between time step #
and.i + 1{eqns 3 and 4). Note how the ratio of 4D,/ P
will vary between 0 and 1. If the animal’s step from i
to i + 1 is directly away from the home range centre
then this ratio is equal to 1, otherwise it.isless than 1.
In this way o, varies with each step the-animal takes
(eqn 2).

The angle and distance of travel for each step is
determined by a random wariable, &, which is gen-

-erated from a normal distribution with mean 0 and

variance g, (eqn 5). Note that the magnitude of o;
determines the variance of ¢, The turning angle of a
hare is determined by the previous angle turned as
well as o, (eqn 6). Therefore, when «; is large the animal
will have a tendency to turn more frequently in its
path. When o; is small it will tend to-continue in a
straight line. As a hare gets farther from its centre, o,
will tend to increase {as g, increases) causing the ani-
mal to turn more frequently and not cross off the
home range boundary. How quickly this happens is
dependent on k, the animal’s central tendency and
sinuosity ($,). Finally, the hare’s new coordinates are
determined using trigonometric functions (eqns 7 and
8). The process is repeated for each time step in the
simulation.

The sources of variation in hare movement we
wished to simulate was the area traversed in a given
trap night. This could be accomplished by varying the
sinuosity (5;) alone. The central tendency factor (k)
was held constant at 0-5, which scaled the simulated
path to the range of sizes of hare home ranges
observed on Kluane trapping grids. Step length P, was
set constant at 10 m.

SINUOSITY AS A FUNCTION OF HOME RANGE
SIZE

Using simulations Benhamou (1989} determined the
distribution of points generated by the random walk
models was most closely approximated by a circular
bivariate exponential distribution. The home range
area was then defined as the (-95 probability density
of an animals location from the cemtre. With this
relation the home range area (HRA) could then be
related to the standard deviation (L) of points from
the home range centre by the following equation (for
more details see Benhamou 1989):
HRA = T5n* eqn 9
Given this relation, sinuosity {S,) and central tendency
(k) were related using simulations. In these simu-
lations a range of S, and k-values were used to gen-
erate data sets with varying standard deviations of the
X and Y locations from the home range centre. By
adjusting a function gk, S.)=ak™'S;? to . the

observed values of:usingthe least squares-methodhe
obtained the following equation:
1492
o=
k- SE

eqn 10

This formula allows the user to vary both k and S, to
obtain desired home range sizes. In the case of the
hare simulations, we assumed k was constant at -5,
and §; was determined by the hares’ home range size.
We modified the equations so that the only parameter
related to home range area was S,. So the constants
were combined to calculate sinuosity (S,) from
observed or assessed home range size by the following
equation.

427

= —— eqn 11
(HRA'*

b

Appendix 2

CAPTURE PROBABILITY MODEL OF BURNHAM

No simulation program is needed to simulate capture
probabilities when all capture probabilities are equal.
To simulate capture probability variation with behav-
iour and heterogeneity we used a slightly modified
version of K. Burnham's simulation model as used by
Wilson (1983)

We will first describe model M, in a conceptual
format and then detail the mathematical equations.
An individual () is assigned an capture probability
(p;) for the first trap night () from a population dis-
tribution determined by an heterogeneity effect (B)
and a time effect (¥)). An effect is a randomly gen-
erated variable from a centred probability distri-
bution. The capture probability of the hare varies each
trap night only by a time effect ( ¥)) until it is trapped.
Once it is trapped its capture probability decreases or
increases as determined by a behaviour effect (V).
The initial distribution of capture probabilities, and
the distribution of changes in capture probabilities is
assumed to be appreximately normal or slightly cen-
tred and is approximated by a beta distribution (dis-
cussed below). The actual equations are now detailed.

8,=0+(B—B)+(¥,—F) forj=1 eqn12
8,=0,, +V,Z,+(¥Y,—TF) forj>1 eqn 13
el
Py = eqn 14
1+€%

In equation 12, 8, is a capture probability for indi-
vidual  on trapping occasion (or trap night) 5. Pis the
mean capture probability effect and is proportional to
the mean capture probability input for the simulation.
B, is a heterogeneity effect, and B is the mean effect
for the population. ¥, is a time effect that is generated
each trap night affecting each individual:equally:and
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Y is-the:mean effect for the ;population. For sub-
sequent trap -nights«{j>> 1) the .capture -probability
effect is defined by equation 13: In equationi3,-the
capture probability from the previous trap ‘night
(8, ;) plus a behaviourial effect (V;)-and time effect
determine. an individuals capture probability. The
inclusion of ¥ is determined by Z; that is-equal to 1
if an-animal has been trapped on occasion j—/, and-is
equal 1o 0 otherwise. So if the animal was not trapped
on the previous trapping occasion (j-1), then the
behaviour term (¥;) has no effect.

For each individual hare (7} on each trap night ()
an-effect (8,) is generated by the above equations. To
assure the capture probability effects are contained

between 0-and 1, is-scaled-into a probability (p;)

using-a-logistic transform:equation (eqn 14).

Each effect was generated-from a beta distribution:
For-our simulation we used ‘beta parameters a = 2
and b =2 to simulate the heterogeneity effect. This
produced a slightly centred distribution with mean 0-5
and variance 0-05. We chose this to produce a wide
scatter of initial capture probabilities. The behaviour
and time effects were simulated with beta parameters
a =6 .and b=19. These produced 2 normal dis-
tribution with mean 0-24 and variance 0-07. We chose
these parameters to make the effect of trapping time
centred; with occasional larger effects.
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